Bìol. Tvarin, 2016, Volume 18, Issue 2, pp. 160–165



N. E. Yanovych1, Y. F. Rivis2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky,
50 Pekarska str., Lviv 79010, Ukraine

2Institute of Agriculture of Carpathian Region NAAS,
5 Grushevskogo str., Obroshino, Lviv Oblast, 81115, Ukraine

Copper and Zinc are essential for fishes elements with wide spectrum of biological activity, however their simultaneous influence on the activity of antioxidant system and carp growth in physiological and excessive concentrations demands further investigations. Actuality of following experiments is determined, inter alia, by species differences of susceptibility of fishes to increased content of trace elements in diet, organic and tissue peculiarities of their distribution in organism.

This paper presents that at Copper concentration in mixed fodder equated to 1 MPL (maximum permitted level) it accumulates in the gills of carp in greater measure than in the liver and skeletal muscles. At the same time, Zinc accumulates equally in the gills, liver and skeletal muscles. At 2 MPLs in mixed fodder, Copper accumulates equally in all abovementioned tissues of carp, while Zinc accumulates preferably in the gills and liver, than in the skeletal muscles. At 1 MPL of Copper and Zinc in mixed fodder, activity of main antioxidant enzymes in the carp gills, liver and skeletal muscles is increasing against the decreasing of lipid peroxidation products level. At 2 MPL of Copper and Zinc in mixed fodder, level of lipid peroxidation products in the gills, liver and skeletal muscles of carp is conversely increasing. During the experiment (45 days), carps of control group increased their live weight 1.65 times, and carps of the 1st and 2nd experimental groups — 1.94 and 1.82 times, respectively.


1. Jing Li J., Haixin Yu, Yaning Luan. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. Int. J. Environ. Res. Public Health, 2015, vol. 12, № 12, pp. 14958–14973.

2. Sandor Z., Csengeri I., Oncsik M. B., Alexis M. N., Zubcova E. Trace metal levels in freshwater fish, sediment and water. Environ. Sci. Pollut. Res. Int, 2001, vol. 8, № 4, pp. 265–268.

3. Štrbac S., Kašanin-Grubin M., Jovančićević B., Simonović P. Bioaccumulation of Heavy Metals and Microelements in Silver Bream (Brama brama L.), Northern Pike (Esox lucius L.), Sterlet (Acipenser ruthenus L.), and Common Carp (Cyprinus carpio L.) From Tisza River, Serbia. J. Toxicol. Environ. Health A, 2015, vol. 78, № 11, pp. 663–665.

4. Clearwater S. J., Farag A. M., Meyer J. S. Bioavailability and toxicity of dietborne Copper and Zinc to fish. Comp. Biochem. Physiol. C. Toxicol. Pharmacol, 2002, 132, vol. 3, pp. 269–313.

5. Rajamanickam V., Muthuswamy N. Effect of heavy metals induced toxicity on metabolic biomarkers in common carp (Cyprinus Carpio L.). Mj. Int. J. Sci. Tech., 2008, vol. 12, № 01, pp. 192–200.

6. Yanovych N. E., Yanovych D. O. Role of trace elements in pond fishes vital functions. Science herald of LNUVM and BT named after S. Z. Gzhytsky., 2014, vol. 16, no. 2, pp. 345–372. (in Ukrainian)

7. Huang Y. S., Cunnane S. C., Horrobin D. F., Davignon J. Most biological effects of Zinc deficiency corrected by gamma-linolenic acid (18:3 omega 6) but not by linoleic acid (18:2 omega 6). Atherosclerosis, 1982, 41, pp. 193–207.

8. Reed S., Xia Qin, Ran-Ressler R., Brenna J.-T., Glahn R. P., Tako E. Dietary Zinc deficiency affects blood linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of Zinc status in vivo (Gallus gallus). Nutrients, 2014, vol. 6, № 3, pp. 1164–1180.

9. Wahle K. W. J., Davies N. T. Effect of dietary Copper deficiency in the rat on fatty acid composition of adipose tissue and desaturase activity of liver microsomes. British Journal of Nutrition, 1975, vol. 34, pp. 105–112.

10. Lewis R. J., Sr. Hawley’s condensed chemical dictionary. 15th ed. New York, Hoboken, Wiley, 2007, 1379 p.

11. Kostyuk V. A., Potapovuch A. I., Kovaleva G. I. Simple and sensible method of superoxide dismutase activity determination, based on reaction of cvercetin oxidation. Questions of medical chemistry, 1990, vol. 2, pp. 88–91. (in Russian)

12. Moin V. M. Simple and specific method of glutathione peroxidase activity determination in erythrocytes. Laboratory work, 1986, vol. 12, pp. 724–727. (in Russian)

13. Korolyuk M. A., Ivanova L. I., Mayorova I. G. Method of catalase activity determination. Laboratory work, 1988, vol. 1, pp. 16–18. (in Russian)

14. Price W. J. Analytical Atomic Absorption Spectrometry. Heyden and Son Ltd., London, 1972, 239 p.

15. Myronchik V. V. Technique of determination of lipid hydroperoxides in biological tissues. Patent USSR no. 1084681, 1984. (in Russian)

16. Stalnaya I. D. Determination of conjugated dienes. In: Contemporary methods in biochemistry, Orechovich V. N., ed. Moscow, Medicine, 1977, pp. 63–63. (in Russian)

17. Korobeynikova S. N. Modification of definition of lipid peroxidation products in reaction with thiobarbituric acid. Laboratory work, 1989, no. 7, pp. 8–9. (in Russian)

Download full text in PDF format

© 2016 Institute of Animal Biology