Bìol. Tvarin, 2016, vol. 18, no. 1, pp. 117–125


S. Ruban1, V. Danshin2, О. Fedota3

This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Animal Breeding and Genetics nd. a. M. V. Zubets NAAS,
1 Pogrebnyak str., Chubynske village, Boryspil district, Kyiv region, 08321, Ukraine

2Institute of Animal Husbandry NAAS,
7 Guards Army str., 3, Kulynychi, Kharkіv district, Kharkiv region, 62404, Ukraine

3V. N. Karazin Kharkiv National University,
4 Svobody sq., Kharkiv 61022, Ukraine

The review article is devoted to the world advances in genomic selection of cattle. Advances in animals genome sequencing track the inheritance of chromosomal fragments with low and high density chips to calculate the genetic value of animals. Since the bulls phenotypes are much more accurate than the cows, the reference population consists mainly of genotyping bulls assessed on progeny. At the same time, in some countries cows are included in the reference population after a certain standardization of their phenotypes.

Assessment of effects of a large number of SNP-markers are used to predict animals breeding values. The prognosis can be carried out immediately after the birth of the animal, regardless of availability about animal or its relatives productivity data. In most cases, the final score is the sum of the effects of the combination of SNP-markers and residual polygenic effects with traditional evaluation results.

Comparison of genomic evaluation methods indicates some advantage of Bayesian methods in the presence of a small amount of quantitative trait loci (QTL) with significant effects, but in practice genomic BLUP is mostly used. Genomic score is particularly profitable in dairy farming because the generation interval is twice lower compared to traditional assessment of offspring. Higher reliability of estimates of bulls mothers breeding values compensates reduced reliability of estimates of bulls fathers breeding values. The cost of genotyping is significantly lower than the cost estimates of offspring. When using genomic selection the average annual genetic progress can be doubled, even if the intensity of the selection remains unchanged.


  1. Ruban S. Y., Fedota O. M. The directions of selection organization in the dairy and beef cattle breeding of Ukraine. Breeding and Genetics, 2013, no.47, pp. 5–13. (in Ukrainian)
  2. Fischer R. A. The correlation between relatives: the supposition of mendelain inheritance. Transactions of the royal society of Edinburgh, 1918, vol. 52, 399 p.
  3. Grisart B., Coppieters W., Farnir F., Karim L., Ford Ch., Berzi P., Cambisano N., Mni M., Reid S., Simon P., Spelman R., Georges M., Snell R. Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition. Genom Res., 2002, vol. 12, p. 222. https://doi.org/10.1101/gr.224202
  4. Hayes B. J., Goddard M. E. The distribution of the effects of genes affecting quantitative traits in livestock. Genet. Sel. Evol., 2001, vol. 33, p. 209. https://doi.org/10.1186/1297-9686-33-3-209
  5. Meuwissen T. H. E., Hayes B. J. Goddard M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, vol. 157, p. 1819.
  6. Matukumalli L. K., Lawley C. T., Schnabel R. D., Taylor J. F., Allan M. F., Heaton M. P., O’Connell J., Moore S. S., Smith T. P., Sonstegard T. S., Van Tassell C. P. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE, 2009, no.4, e 5350.
  7. Van Raden P. M., Olson K. M., Null D. J., Hutchison J. L. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci., 2011, vol. 94, p. 6153. https://doi.org/10.3168/jds.2011-4624
  8. Boichard D. Brochard M. New phenotypes for new breeding goals in dairy cattle. Animals, 2012, no.6, p. 544. https://doi.org/10.1017/S1751731112000018
  9. Wiggans G. R., Van Raden P. M., Cooper T. A. The genomic evaluation system in the United States: past, present, future. J. Dairy Sci., 2011, vol. 94, p. 3202. https://doi.org/10.3168/jds.2010-3866
  10. Van Raden P. M., Van Tassell C. P., Wiggans G. R., Sonstegard T. S., Schnabel R. D., Taylor J. F., Schenkel F. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 2009, vol. 92, p. 16. https://doi.org/10.3168/jds.2008-1514
  11. Verbyla K. L., Hayes B. J., Bowman P. J., Goddard M. E. Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genet. Res., 2009, vol. 91, p. 307. https://doi.org/10.1017/S0016672309990243
  12. Croiseau P., Legarra A., Guillaume F., Fritz S., Baur A., Colombani C., Robert-Granié C., Boichard D., Ducrocq V. Fine tuning genomic evaluations in dairy cattle through SNP pre-selection with Elastic-Net algorithm. Genet. Res., 2011, vol. 93, p. 409. https://doi.org/10.1017/S0016672311000358
  13. Boichard D., Guillaume F., Baur A., Croiseau P., Rossignol M. N., Boscher M. Y., Druet T., Genestout L., Colleau J. J., Journaux L., Ducrocq V., Fritz S. Genomic selection in French dairy cattle. Animal Prod. Sci., 2012, vol. 52, p. 115. https://doi.org/10.1071/AN11119
  14. Cole J. B., Van Raden P. M., O’Connell J. R., Van Tassell C. P., Sonstegard T. S., Schnabel R. D., Taylor J. F.,. Wiggans G. R. Distribution and location of genetic effects for dairy traits. J. Dairy Sci., 2009, vol. 92, p. 2931. https://doi.org/10.3168/jds.2008-1762
  15. Mäntysaari E., Liu Z., Van Raden P. Interbull validation test for genomic evaluations. Interbull Bulletin, 2011, no.41, p. 17.
  16. Wiggans G. R., Cooper T. A., Van Raden P. M., Cole J. B. Adjustment of traditional cow evaluations to improve accuracy of genomic predictions. J. Dairy Sci., 2011, vol. 94, p. 6188. https://doi.org/10.3168/jds.2011-4481
  17. Misztal I., Legarra A., Aguila I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci., 2009, vol. 92, p. 4648. https://doi.org/10.3168/jds.2009-2064
  18. Christensen O. F., Lund M. S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol., 2010, vol. 42, p. 2. https://doi.org/10.1186/1297-9686-42-2
  19. Liu Z., Seefried F. R., Reinhardt F., Rensing S., Thaller G., Reents R. Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction. Genet. Sel. Evol., 2011, vol. 43, p. 19. https://doi.org/10.1186/1297-9686-43-19
  20. Lund M. S., de Roos A. P. W., de Vries A. G., Druet T., Ducrocq V., Fritz S., Guillaume F., Guldbrandtsen B., Liu Z., Reents R. Common reference of four European Holstein populations increase reliability of genomic predictions. Genet. Sel. Evol., 2011, vol. 43, p. 43. https://doi.org/10.1186/1297-9686-43-43
  21. Dürr J., Philipsson J. International cooperation: the pathway for cattle genomics. Animal Frontiers, 2011, no.2, p. 16.
  22. Schaeffer L. R. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet., 2006, vol. 123, p. 218. https://doi.org/10.1111/j.1439-0388.2006.00595.x
  23. Norman H. D., Wright J. R., Hutchinson J. I., Mattison J. M. Selection changes in the United States due to genomics. Interbull Bulletin, Berlin, 2014, no.48, p. 20.
  24. Hutchison J. L., Cole J. B., Bickhart D. M. Use of young bulls in the United States. J. Dairy Sci., 2014, vol. 97, p. 3213. https://doi.org/10.3168/jds.2013-7525
  25. Soyeurt H., Dardenne P., Dehareng F., Lognay G., Veselko D., Marlier M., Bertozzi C., Mayeres P., Gengler N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci., 2006, vol. 89, p. 3690. https://doi.org/10.3168/jds.S0022-0302(06)72409-2
  26. Egger-Danner C., Cole J. B., Pryce J. E., Gengler N., Heringstad B., Bradley A., Stock K. F. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal, 2015, no.9, p. 191. https://doi.org/10.1017/S1751731114002614
  27. Boichard D., Chung H., Dassonneville R., David X., Eggen A., Fritz S., Gietzen K. J., Hayes B. J., Lawley C. T., Sonstegard T. S. Design of a bovine low-density SNP array optimized for imputation. PLoS ONE, 2012, no.7, e 34130.

Download full text in PDF format

© 2016 Institute of Animal Biology