Bìol. Tvarin, 2013, volume 15, issue 1, pp. 126–133


V. J. Syrvatka, Y. I. Slyvchuk, I. I. Rozgoni, I. I. Gevkan

This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute of Animal Biology NAAS,
38 V. Stus str., Lviv 79034, Ukraine

The aim of the study was to investigate the influence of silver nanoparticles on rabbit’s gametes in vitro and fertilization processes in vivo.

 For this purpose, we used a commercially available silver nanoparticles (synthesized by electrochemical method) and nanoparticles synthesized in laboratory via chemical reduction. Westudied the effect of different concentrations of silver nanoparticles (0, 0.01, 0.1, 1, and 10 mg/ml) in culture medium on rabbit’s oocytes maturation co-cultured with granulosa cells and on sperm viability and motility during 72 hours of storage at 15 °C. The efficiency of artificial insemination in presence of silver nanoparticles in sperm extender at concentration of 0.1 mg/ml was determined for study of their effect on the fertilization process in vivo.

 It was revealed, that silver nanoparticles at the concentration of 0.01 to 10 µg/ml hadno negative impact on the maturation of oocytes in vitro. However, in concentration 10 µg/ml silver nanoparticles caused a decrease in viabilityof granulosa cells and change in biochemical parameters of conditioned medium. The results showed that silver nanoparticles at the concentration of 0.01 to 1µg/ml did not influencedupon rabbit’s sperm motility and viability. Nevertheless, presence of silver nanoparticles in sperm extender at a concentration of 10 µg/ml led to reduction of sperm motility and viability during 72 hours of storage. The concentration of silver nanoparticles 0.1 µg/ml in a semen extender had no influence on the number of pregnant rabbits and newborn per doe.

Thus, concentration of 1 µg/ml of silver nanoparticles is critical, increases of this concentration are potentially toxic on animal’s reproductive system.


  1. Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules, 2011, vol. 16, pp. 8894–8918.
  2. Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. Characterization of enhancedanti bacterial effects of novel silver nanoparticles. Nanotechnology, 2007, vol. 18.
  3. Kim K-J., Sung W. S., Moon S-K. Choi J-S. Kim J. G., Lee D. G. Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology, 2008, vol. 18, no. 8, pp. 1482–1484.
  4. Humberto H. L., Nilda V. A-N., Liliana I-T., Cristina R-P. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 2010, 8:1. Available at:
  5. Cao W., Huang T., Xu X-H. N., Elsayed-Ali H. E. Localized surface plasma on resonance of single silver nanoparticles studied by dark-fieldoptical microscopy and spectroscopy. J. Appl. Phys., 2011, vol. 109, 034310.
  6. Nallathamby P. D., Xu X. H. Study of Cytotoxic and Therapeutic Effects of Stable and Purified Silver Nanoparticles on Tumor Cells. Nanoscale, 2010, vol. 2, no. 6, pp. 942–952.
  7. Asha Rani, P. V., Low Kah Mun G., Hande M. P. Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, vol. 3, pp. 279–290.
  8. Stensberg M. C., Wei Q., McLamore E. S., Porterfield D. M., Wei A., Sepulveda M. S. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond), 2011, vol. 6, no. 5, pp. 879–898.
  9. Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A. Boritz C., MulfingerL. Synthesis and Study of Silver Nanoparticles. J. Chem. Ed., 2007, vol. 84, no. 2, pp. 322–325.
  10. Vithiya K., Sen S. Biosynthesis of nanoparticles. IJPSR, 2011, vol. 2, no. 11, pp. 2781–2785.
  11. Wiwanitkit V., Sereemaspun A., Rojanathanes R. Effect of gold nanoparticles on spermatozoa: the first world report. Fertil. Steril., 2009, vol. 91, pp. 7–8.
  12. Taylor U., Petersen S., Barchanski A., Mittag A., Barcikowski S., Rath D. Influence of gold nanoparticles on vitality parameters of bovine spermatozoa. Reprod. Domest. Anim., 2010, vol. 45, pp. 60–60.
  13. Braydich-Stolle L. K., Lucas B., Schrand A., Murdock R. C., Lee T., Schlager J., HussainS., Hofmann M. C. Silver nanoparticles disrupt GDNF/Fynkinase signalling in spermatogonial stem cells. Toxicol. Sci., 2010, vol. 116, pp. 577–589.
  14. Carlson C., Hussain S. M., Schrand A. M. Unique cellularinter action of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B., 2008, vol. 112, pp. 13608–13619.
  15. Ahamed M., Karns M., Goodson M., Rowe J., Hussain S. M. DNA damage response to different surface chemistry of silver nanoparticles. Toxicol. Appl. Pharm., 2008, vol. 233, pp. 404–410.
  16. Wu Y., Zhou Q., Li H., Liu W., Wang T., Jiang G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryziaslatipes) using the partial-life test. Aquat. Toxicol., 2010, vol. 100, pp. 160–167.
  17. Grodzik M., Sawosz E. The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J. Anim. Feed Sci., 2006, vol. 15, pp. 111–114.
  18. Rosas-Hernandez H., Jimenez-Badillo S., Martĺnez-Cuevas P. P. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolatedrataorticrings. Toxicol. Lett., 2009, vol. 191, pp. 305–313.
  19. Asharani P. V., Wu Y. L., Gong Z., Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, vol. 19, 255102.

Download full text in PDF format




WorldCat Logo