Bìol. Tvarin, 2018, volume 20, issue 1, pp. 16–22


Y. O. Barylo, Y. V. Loboiko
This email address is being protected from spambots. You need JavaScript enabled to view it.

Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky,
50 Pekarska str., Lviv 79010, Ukraine

Intensification and development potential of the aquaculture sector have created problems relating to the ecological purity and quality of the final fish product. In the conditions of Ukraine, there is extremely little information regarding the objects of trout fishing. Therefore, the purpose of our work was to investigate and analyse individual chemical and biochemical parameters of muscle tissue of commercially profitable and valuable indigenous species of salmon fish grown under the same conditions.
As the materials for research the brown trout (Salmo trutta m. fario), rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) in the age of a year and a half (1+) served.
According to the results of the research, moisture composition in the muscular tissue of brown trout was higher compared to rainbow trout and brook trout (P<0.01). In brook and rainbow trout, the amount of the protein is significantly higher (P<0.01) than in brown trout. The content of ash in brook trout, brown and rainbow trout was 1.23 %, 1.16 %, 1.25 %, respectively. The percentage of total lipids in the muscle tissue of rainbow trout and brook trout was significantly higher than in brown trout (P<0.01). The higher content of free cholesterol and mono- and diacylglycerols in brook trout compared to the brown and rainbow trout (P<0.01) was noticed.


  1. Ackman R. G. Seafood lipids. In: Shahidi F., Botta J. R. (Eds.). Seafoods, Chemistry, Processing Technology and Quality. Blackie Academic & Profesional, Glasgow London, 1994, pp. 34–48. https://doi.org/10.1007/978-1-4615-2181-5_4
  2. AOAC (Association of Official Analytical Chemists). Official methods of analysis of the Association of Official Analytical Chemists. 13th ed. Washington, D.C., 1980.
  3. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. 16th ed. Arlington, V.A, Author. 1995. https://doi.org/10.3923/jfas.2013.295.298
  4. Barylo Ye. Biochemical and morphometric parameters of pre-larvae of three salmonids species at one-day age. Fisheries science of Ukraine, 2016, 2 (36), pp. 38–47. (in Ukrainian)
  5. Breck J. E. Body composition in fishes: body size matters. Aquaculture, 2014, 433 (20), pp. 40–49. https://doi.org/10.1016/j.aquaculture.2014.05.049
  6. Cakmak O., Altuntas A., Ugurcu V., ErdemliH. K., Akyol S. Female Leuciscus lepidus May Be a New Alternative for Fish Oil Supplements. Journal of Chemistry, 2015, 7 p. https://doi.org/10.1155/2015/69630310.1155/2015/696303
  7. Çelikkale M. S., Kurtoğlu İ. Z., Şahin S., Sivri N., Akyol A. Gökkusağı (Oncorhynchus mykiss) ve Kaynak Alabalığı (Salvelinus fontinalis)’nın Et Verim Özellikleri ve Etin Biyokimyasal Bileşiminin Karşılaştırılması. III. Su Ürünleri Sempozyumu, Erzurum, 1998, pp. 41–49. (in Turkish)
  8. Dempson J. B., Schwar C. J., Shears M., Furey G. Comparative proximate body composition of Atlantic salmon with emphasis on parr from fluvial and lacustrine habitats. Journal of Fish Biology, 2004, 64, pp. 1257–1271. https://doi.org/10.1111/j.0022-1112.2004.00389.x
  9. Dumas A., de Lange C. F. M., France J., Bureau D. P. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2007, 263, pp. 165–181. https://doi.org/10.1016/j.aquaculture.2007.09.026
  10. Ehsania A., Mohammad S. J., Khodayaria M. Differentiation of common marketable-size rainbow trouts (Oncorhynchus mykiss) based on nutritional and dietetic traits: a comparative study. Journal of Applied Animal Research, 2013, 41 (4), pp. 387–391. https://doi.org/10.1016/j.aquaeng.2009.06.012
  11. Exler J., Weihrauch J. L. Comprehensive evaluation of fatty acids in foods. VIII. Finfish. Journal of the American Dietetic Association, 1976, 69 (3), pp. 243–248.
  12. Fallah A. A., Saei-Dehkordi S. S., Nematollah A. Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 2011, 46 (4), pp. 767–773. https://doi.org/10.1111/j.1365-2621.2011.02554.x
  13. Fischer G. J., Held J., Hartleb C., Malison J. Evaluation of brook trout production in a coldwater recycle aquaculture system. Aquacultural engineering, 2009, 41, pp. 109–113. https://doi.org/10.1016/j.aquaeng.2009.06.012
  14. Folch J., Lees M., Sloane-Stanley G. H. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 1957, 226, pp. 497–509.
  15. Haloyan L., Mruk A., Kucheruk A., Terteryan L. Productive characteristics of age-3 brood brown trout (Salmo trutta) reared in the conditions industrial aquaculture. Fisheries science of Ukraine, 2017, 1 (39), pp. 64–72. https://doi.org/10.1016/j.foodchem.2004.07.001
  16. Huss H. H. Quality and quality changes in fresh fish, FAO Fisheries Technical Paper no. 348, Rome, Italy, 1995.
  17. Jabeen F., Chaudhry A. S. Nutritional composition of seven commercially important freshwater fish species and the use of cluster analysis as a tool for their classification. The Journal of Animal & Plant Sciences, 2016, 26 (1), pp. 282–290.
  18. Jan U., Shah M., Manzoor T., Ganie S. A. Variations of Protein Content in the Muscle of Fish Schizothorax niger. American-Eurasian Journal of Scientific Research, 2012, 7 (1), pp. 01–04. https://doi.org/10.5829/idosi.aejsr.2012.7.1.64126
  19. Karabulut H. A., Balta F., Yandi İ., Serezli R. The Efects of Diferent Levels of Ascorbic Acid on Growth Performance and Meat Composition of Brook Trout (Salvelinus fontinalis). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 2011, 17 (2), pp. 303–308. https://doi.org/10.9775/kvfd.2010.3538
  20. Kaya Y., Erdem M. E. Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L., 1758): crude lipid, gonadosomatic index and fatty acids. International Journal of Food Sciences and Nutrition, 2009, 60 (5), pp. 413–423. https://doi.org/10.1080/09637480701777886
  21. Kaya Y., Erdem M. E., Turan H. Monthly Differentiation in Meat Yield, Chemical and Amino Acid Composition of Wild and Cultured Brown Trout (Salmo Trutta Forma Fario Linneaus, 1758). Turkish Journal of Fisheries and Aquatic Sciences, 2014, 14, pp. 479–486. https://doi.org/10.4194/1303-2712-v14_2_19
  22. Keriko J., Chege M., Magu C. W., Mwachiro M. M., Murigi E. C., Githua A. N. Kareru P. G. Fish lipid contents and classes of selected fish species found in Lake Naivasha (Kenya) and the fish feeding habits of the lake’s inhabitants. African journal of pharmacy and pharmacology, 2010, 4 (10), pp. 745–753.
  23. King M., Boyd L., Sheldon B. Antioxidant Properties of Individual Phospholipids in a Salmon Oil Model System. Journal of the American Oil Chemists Society, 1992, 69 (6), pp. 545–551. https://doi.org/10.1007/BF02636106
  24. Lochmann S. E., Maillet G. L., Frank K. T., Taggart C. T. Lipid class composition as a measure of nutritional condition in individual larval Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, pp. 1294–1306. https://doi.org/10.1139/f95-126
  25. Lowry O. H., Roserrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. Journal of Biology and Chemistry, 1951, 193, pp. 265–275.
  26. Moriya H., Hosokawa M., Miyashita K. Combination effect of herring roe lipids and proteins on plasma lipids and abdominal fat weight of mouse. Journal of Food Science, 2007, 72 (5), pp. 231–234. https://doi.org/10.1016/j.foodchem.2004.07.001
  27. Mruk A., Terteryan L., Khandozhivska A., Terteryan L. Monitoring of brown trout growth in industrial conditions of the fish farm “Ishkhan”. Fisheries science of Ukraine, 2013, pp. 31–37. (in Ukrainian)
  28. Okumus I., Bascinar N. A comparative study on water column and bottom feeding habit of tank reared brook trout. Turkish Journal of Marine Sciences, 2002, 8 (1), pp. 17–26.
  29. Oluwaniyi O.O., Dosumu O.O. Preliminary studies on the effect of processing methods on the quality of three commonly consumed marine fishes in Nigeria. Biochemistry, 2009, 21 (1), pp. 1–7.
  30. Puwastien P., Judprasong K., Kettwan E., Vasanachitt K., Nakngamanong Y. Bhattacharjee L. Proximate Composition of Raw and Cooked Thai Freshwater and Marine Fish. Journal of Food Composition and Analysis, 1999, 12 (1), pp. 9–16. https://doi.org/10.1016/j.foodchem.2004.07.001
  31. Rasmussen R. S., Ostenfeld T. H. Effect of growth rate on quality traits and feed utilisation of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture, 2000, 184 (3), pp. 327–337. https://doi.org/10.1016/j.foodchem.2004.07.001
  32. Rasoarahona J. R. E., Barnathan G., Bianchini J. P., Gaydou E. M. Influence of season on the lipid content and fatty acid profiles of three tilapia species (Oreochromis nilolicus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chemistry, 2005, 91 (4), pp. 683–694. https://doi.org/10.1016/j.foodchem.2004.07.001
  33. Ringø E., Vennø A. T., Cato B. I. Effects of starvation on the lipid composition in muscle tissue and liver of hatchery-reared Arctic charr, Salvelinus alpinus (L), from Lake Takvatn. Fiskeridirektoratets Skrifter. Serie Ernæring, 1990, 3, pp. 13–20.
  34. Shamsudin S., Salimon J. Physicochemical characteristics of aji-aji fish (Seriola nigrofasciata) lipids. The Malaysian Journal of Analytical Sciences, 2006, 10 (1), pp. 55–58.
  35. Shi P. S, Wang Q., Zhu Y. T., Gu Q. H., Xiong B. X. Comparative study on muscle nutritional composition of juvenile bighead carp (Aristichthys nobilis) and paddlefish (Polyodon spathula) fed live feed. Turkish Journal of Zoology, 2013, 37 (3), pp. 321–328.
  36. Shirai N., Suzuki H., Tokairin S., Ehara H., Wada S. Dietary and seasonal effects on the dorsal meat lipid composition of Japanese (Silurus asotus) and Thai catfish (Clarias macrocephalus and hybrid Clarias macrocephalus and Clarias galipinus). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2002, 132 (3), pp. 609–619. https://doi.org/10.1016/S1095-6433(02)00081-8
  37. Souza M. L. R., Macedo-Viegas E. M., Zua­non J. A. S., Carvalho M. R. B., Goes E. S. R. Processing yield and chemical composition of rainbow trout (Oncorhynchus mykiss) with regard to body weight. Acta Scientiarum. Animal Sciences, 2015, 37 (2), pp. 103–108. https://doi.org/10.4025/actascianimsci.v37i2.24165
  38. Stancheva M., Dobreva D., Merdzhanova A., Galunska B. Vitamin content and fatty acids composition of rainbow trout (Oncorhynchus mykiss). Plodiv. University, Paisii Hilendarski, Bulgaria Scientific Papers, 2010, 37 (5), pp. 117–123.
  39. Tidballb M. M., Exlerc J., Somanchic M., Williamsc J., Krafta C., Curtisa P., Tidballa, K. G. Addressing information gaps in wild-caught foods in the US: Brook trout nutritional analysis for inclusion into the USDA national nutrient database for standard reference. Journal of Food Composition and Analysis, 2017, 60, pp. 57–63. https://doi.org/10.1016/j.jfca.2017.03.004
  40. Tocher D. R. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 2003, 11 (2), pp. 107–184. https://doi.org/10.1080/713610925
  41. Weinstein M. P., Litvin S. Y., Guida V. A. Stable Isotope and Biochemical Composition of White Perch in a Phragmites Dominated Salt Marsh and Adjacent Waters. Wetlands, 2010, 30 (6), 1181–1191. https://doi.org/10.1007/s13157-010-0102-2
  42. Yeşilayer N., Genç N. Comparison of proximate and fatty acid compositions of wild brown trout and farmed rainbow trout. South African Journal of Animal Science, 2013, 43 (1), pp. 89–97. https://doi.org/10.4314/sajas.v43i1.11

Download full text in PDF




WorldCat Logo