Bìol. Tvarin, 2019, volume 21, issue 4, pp. 75–83


T. M. Suprovych1, O. I. Vishchur2, M. P. Suprovych1, V. A. Chepurna1

This email address is being protected from spambots. You need JavaScript enabled to view it.

1State Agrarian and Engineering University in Podillya,
13 Shevchenko str., Kamianets-Podilskyi, Khmelnitsky region, 32300, Ukraine

2Institute of Animal Biology NAAS,
38, Vasyl Stus str., Lviv 79034, Ukraine

A significant genetic correlation between the indicator of the somatic milk cells amount (SCC) and intramammary infection has been established, making it possible to use it in breeding programs for reducing of mastitis in cows. Various studies demonstrated that resistance (susceptibility) to mastitis is genetically predetermined. Among the genes associated with diseases, special attention is paid to exon 2 of the gene BoLA-DRB3, which is quite polymorphic. The aim of the study was to identify associations between alleles of the gene BoLA-DRB3 and SCC among cows of Ukrainian black-and-white dairy breed (N = 92). The RFLP-PCR method revealed 31 BoLA-DRB3.2 alleles. The relative risk index and the χ2 test were used to establish a link between the allele frequencies and the SCC. Two alleles with strong association with low level of SCC (CI = 0.95): BoLA-DRB3.2*22 (P(A) = 0.06; RR = 3.43; χ2 = 3.84) and BoLA-DRB3.2*28 (P(A) = 0.076; RR = -4.14; χ2 = 6.17)were revealed,. An additional check using the precise Fisher’s exact test controlled by Pearson’s contingency coefficient showed that only allele BoLA-DRB 3.2*28 can be used as a marker in connection with low SCC in cows of Ukrainian black-and-white dairy breed. The allele *28 as a SCC marker was revealed for the first time. Analysis of previous studies shows discrepancies between the results that link different BoLA-DRB3.2 alleles with SCC, obtained for different breeds and even within the same breed. In future, it is necessary to expand the research by increasing the research sample and determine the associations between the number of somatic cells not only in connection with allelic polymorphism, but also in connection with the genotypes of the BoLA-DRB3 gene. Interstitial application of the new antibacterial liposomal preparation has led to a decrease in the number of somatic cell cultures in the afflicted animals with subclinical mastitis of cows.


  1. Baltian L. R., Ripoli M. V., Sanfilippo S., Takeshima S. N., Aida Y., Giovambattista G. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina. Molecular Biology Reports, 2012, vol. 39, issue 7, pp. 7215–7220. https://doi.org/10.1007/s11033-012-1526-y
  2. Bannikova L., Korolyov N., Semenikhin V. Microbiological bases of dairy production. Moscow, Agropromizdat, 1987, 400 p. (in Russian)
  3. Behl J. D., Verma N. K., Tyagi N., Mishra P., Behl R., Joshi B. K. The major histocompatibility complex in bovines: a review. International Scholarly Research Notices, Veterinary Science, 2012, ID 872710, 12 p. https://doi.org/10.5402/2012/872710
  4. Crist W. L., Harmon R. J., O’Leary J., McAllister A. J. Mastitis and its control. ASC-140. Cooperative extension service. University of Kentucky College of Agriculture, Lexington, and Kentucky State University, Frankfort, 1997, 14 p. Available at: http://www2.ca.uky.edu/agcomm/pubs/asc/asc140/asc140.pdf
  5. Dietz A. B., Cohen N. D., Timms L., Kehrli M. E. Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. Journal of Dairy Science, 1997, vol. 80, issue 2, pp. 406–412. https://doi.org/10.3168/jds.S0022-0302(97)75951-4
  6. Dietz A. B., Detilleux J. C., Freeman A. E., Kelley D. H., Stabel J. R., Kehrli M. E. Genetic association of bovine lymphocyte antigen DRB3 alleles with immunological traits in Holstein cattle. Journal of Dairy Science, 1997, vol. 80, issue 2, pp. 400–405. https://doi.org/10.3168/jds.S0022-0302(97)75950-2
  7. Gelhaus A., Schnittger L., Mehlitz D., Horstmann R. D., Meyer C. G. Sequence and PCR-RFLP analysis of 14 novel BoLADRB3 alleles. Animal Genetics, 1995, vol. 26, issue 3, pp. 147–153. https://doi.org/10.1111/j.1365-2052.1995.tb03154.x
  8. Heringstad B., Klemetsdal G., Ruane J., Selection for mastitis in dairy cattle: a review with focus on the situation of the Nordic countries. Livestock Production Science, 2000, vol. 64, issue 2–3, pp. 95–106. https://doi.org/10.1016/S0301-6226(99)00128-1
  9. Juliarena M. A., Poli M., Sala L., Ceriani C., Gutierrez S., Dolcini G., Rodríguez E. M., Mariño B., Rodríguez‐Dubra C., Esteban E. N. Association of BLV infection profiles with alleles of the BoLA-DRB3 gene. Animal Genetics, 2008, vol. 39, issue 4, pp. 432–438. https://doi.org/10.1111/j.1365-2052.2008.01750.x
  10. Kelm S. C., Detilleux J. C., Freeman A. E., Kehrli M. E., Dietz A. B., Fox L. K., Butler J. E., Kosckovics I., Helley D. H. Genetic association between parameters of innate immunity and measures of mastitis in periparturient Holstein cattle. Journal of Dairy Science, 1997, vol. 80, issue 8, pp. 1767–1775. https://doi.org/10.3168/jds.S0022-0302(97)76110-1
  11. Kolinchuk R.V. Polymorphism of the BoLA-DRB3 gene according to susceptibility and resistance to necrobacteriosis in cow population of Ukrainian black-pied milk breed. Thesis for a degree in Agricultural Sciences (PhD), M. V. Zubets Institute of Breeding and Animal Genetics the NAAS, Chubynske, Kyiv region, 2018, 184 p. (in Ukrainian)
  12. Kovalyova T. Workshop on the theory of statistics. Educational and practical manual. Moscow, Knorus, 2012, 376 p. (in Russian)
  13. Ledwidge S. A., Mallard B. A., Gibson J. P., Jansen G. B., Jiang Z. H. Multi-primer target PCR for rapid identification of bovine DRB3 alleles. Animal Genetics, 2001, vol. 32, issue 4, pp. 219–221. https://doi.org/10.1046/j.1365-2052.2001.00761.x
  14. Maillard J. C., Renard C., Chardon P., Chantal I., Bensaid A. Characterization of 18 new BoLA-DRB3 alleles. Animal Genetics, 1999. vol. 30, issue 3, pp. 200–203. https://doi.org/10.1046/j.1365-2052.1999.00446.x
  15. Milk and milk products. Guidance on sampling: (ISO, IDF): ISO 707:2002. National standard of Ukraine. From 2003-01-01. Kyiv. Derzhspozhyvstandard of Ukraine, 2003, IV, pp. 2–8. (in Ukrainian)
  16. Nassiry M. R., Shahroodi F. E., Mosafer J., Mohammadi A., Manshad E., Ghazanfari S., Abadi M. R. M., Sulimova G. E. Analysis and frequency of Bovine Lymphocyte Antigen (BoLA-DRB3) alleles in Iranian Holstein Cattle. Russian Journal of Genetics, 2005, vol. 41, issue 6, pp. 664–668. https://doi.org/10.1007/s11177-005-0142-5
  17. Oprządek J. M., Brzozowska A. M., Urtnowski P., Rutkowska K., Łukaszewicz M. Association of BoLA-DRB3 genotype with somatic cell count in milk of Polish Holstein cattle. Revista Brasileira de Zootecnia, 2018, vol. 47, e20150290. https://doi.org/10.1590/rbz4720150290
  18. Oprządek J., Urtnowski P., Sender G., Pawlik A., Łukaszewicz M. Frequency of BoLA-DRB3 alleles in Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 2012, vol. 30, issue 2, pp. 91–101.
  19. Pashmi M., Qanbari S., Ghorashi S. A., Sharifi A. R., Simianer H. Analysis of relationship between bovine lymphocyte antigen DRB3.2 alleles; somatic cell count and milk traits in Iranian Holstein population. Journal of Animal Breeding and Genetics, 2009, vol. 126, issue 4, pp. 296–303. https://doi.org/10.1111/j.1439-0388.2008.00783.x
  20. Ramírez N. F., Montoya A., Cerón-Muñoz M. F., Villar D., Palacio L. G. Association of BoLA-DRB3 and TLR4 alleles with subclinical mastitis in cattle from Colombia. Revista Colombiana de Ciencias Pecuarias, 2014, vol. 27, issue 1, pp. 18–28.
  21. Reshi A. A., Husain I., Bhat S. A., Rehman M. U., Razak R., Bilal S., Mir M. R. Bovine mastitis as an evolving disease and its impact on the dairy industry. International Journal of Current Research and Review, 2015, vol. 7, issue 5, pp. 48–55.
  22. Rupp R., Boichard D. Genetics of resistance to mastitis in dairy cattle. Veterinary Research, 2003, vol. 34, issue 5, pp. 671–688. https://doi.org/10.1051/vetres:2003020
  23. Rupp R., Hernandez A., Mallard B. A. Association of Bovine Leukocyte Antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. Journal of Dairy Science, 2007, vol. 90, issue 2, pp. 1029–1038. https://doi.org/10.3168/jds.S0022-0302(07)71589-8
  24. Sender G., Hameed K. G. A., Korwin-Kossakowska A., Sobczyńska M. Association of the BoLA-DRB3 alleles with estimated breeding value for somatic cell count in Polish dairy cattle. Archiv für Tierzucht, 2008, vol. 51, issue 2, pp. 111–119. https://doi.org/10.5194/aab-51-111-2008
  25. Sender G., Korwin-Kossakowska A., Pawlik A., Hameed K. G. A., Oprządek J. Genetic basis of mastitis resistance in dairy cattle — a review. Annals of Animal Science, 2013, vol. 13, issue 4, pp. 663–673. https://doi.org/10.2478/aoas-2013-0043
  26. Sharif S., Mallard B. A., Wilkie B. N., Sargeant J. M., Scott H. M., Dekkers J. C., Leslie K. E. Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Animal Genetics, 1998. vol. 29, issue 3. pp. 185–193. https://doi.org/10.1111/j.1365-2052.1998.00318.x
  27. Sharma N., Singh N. K., Bhadwal M. S. Relationship of somatic cell count and mastitis: an overview. Asian-Australasian Journal of Animal Sciences, 2011, vol. 24, issue 3, pp. 429–438. https://doi.org/10.5713/ajas.2011.10233
  28. Starkenburg R. J., Hansen L. B., Kehrli M. E., Chester-Jones H. Frequencies and effect of alternative DRB3 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. Journal of Dairy Science, 1997, vol. 80, issue 12, pp. 3411–3419. https://doi.org/10.3168/jds.S0022-0302(97)76316-1
  29. Sulimova G. E. DNA markers in genetic research: marker types, their properties and applications. The Successes of Modern Biology, 2004, vol. 124, issue 3, pp. 260–271. (in Russian)
  30. Suprovych T. M., Suprovych M. P., Koval T. V., Karchevska T. M., Chepurna V. A., Chornyi I. O., Berezhanskyi A. P. BoLA-DRB3 gene as a marker of susceptibility and resistance of the Ukrainian black-pied and red-pied dairy breeds to mastitis. Regulatory Mechanisms in Biosystems, 2018, vol. 9, issue 3, pp. 363–368. https://doi.org/10.15421/021853
  31. Van Eijk M. J. T., Stewart-Haynes J. A., Lewin H. A. Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Animal Genetics, 1992, vol. 23, issue 6, pp. 483–496. https://doi.org/10.1111/j.1365-2052.1992.tb00168.x
  32. Weller J. I., Saran A., Zeliger Y. Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. Journal Dairy Science, 1992, vol. 75, issue 9, pp. 2532–2540. https://doi.org/10.3168/jds.S0022-0302(92)78015-1
  33. Wu X.-X., Yang Z.-P., Wang X.-L., Mao Y.-J., Li S.-C., Shi X.-K., Chen Y. Restriction fragment length polymorphism in the exon 2 of the BoLA-DRB3 gene in Chinese Holstein of the south China. Journal of Biomedical Science and Engineering, 2010, vol. 3, issue 2, pp. 221–225. https://doi.org/10.4236/jbise.2010.32030
  34. Zanotti M., Strillacci M. G., Taboni I., Samorè A. B., Longeri M. Histocompatibility genes and Somatic Cell Count (SCC) in Italian Holstein Friesian. Italian Journal of Animal Science, 2003, vol. 2, issue sup1, Proceedings of the 15th ASPA Congress, Parma, pp. 85–87. DOI: 10.4081/ijas.2003.11675923.

Download full text in PDF




WorldCat Logo