Bìol. Tvarin, 2018, volume 20, issue 3, pp. 43–54


S. B. Kornyat

This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute the Animal Biology NAAS,
38 Vasyl Stus str., Lviv 79034, Ukraine

The article summarizes the literature data on the biochemical mechanisms of the action of the proteins and amino acids in the semen of mammalian males and their role in maintaining the processes of sperm life and fertilizing ability. The main sources of protein and protein compounds of the seminal plasma and their influence in different quantities and qualities signs on the sperms function and their preserving ability in the genital tract of males and females, outside the body, when diluted with synthetic media, short-term storage, their presence in cryopreservation and deconservation mediums of sperm, the presence of fertilization place are considered. The protein content in males is shown to ensure that ejaculates from quality sperm are obtained from them, which will enable them to obtain a high quality and quantitative expression of offspring. The ways of input of substances of protein nature in the epipidymis of the testicles, their content in it and the significance for sperm life are considered. The studies concerning the content of proteins and their components in semen plasma of mammalian males after ejaculation, the dynamics of changes, their effect on the viability and fertilizing ability of sperms and protein compounds of synthetic and natural origin introduced into plasma or the environment which was not there during ejaculation has been described. Also, the use of protein compounds and proteins of various origin in the media used in frozen and defrosted sperm and their positive effect on sperm in this case are considered. The significance of the presence of these substances in the uterine mucus or the environment for fertilization is considered in the ability of sperm to penetrate into the egg and to fertilize it.

Based on the publications reviewed, the author concludes about the importance of using amino acids, peptides and proteins in diluent media, liquid storage, cryopreservation and defrosting medium of semen of male mammals to ensure more complete preservation of the primary purpose of sperm — the ability to fertilize the egg.


  1. Agostinellia E., Przybytkowskib E., Averill-Batesb D. Glucose, glutathione and cellular response to spermine oxidation products. Free Radical Biology & Medicine, 1996, vol. 20, issue 5, pp. 649–656. https://doi.org/10.1016/0891-5849(95)02149-3
  2. Amann R. P., Hammerstedt R. H., Shabanowitz R. B. Exposure of Human, Boar, or Bull Sperm to a Synthetic Peptide Increases Binding to an Egg-Membrane Substrate. Journal of Andrology, 1999, vol. 20, no. 1, pp. 34–41. DOI: 10.1002/j.1939-4640.1999.tb02493.x.
  3. Arangasamy A., Singh L. P., Ahmed N., Ansari M. R., Ram G. C. Isolation and characterization of heparin and gelatin binding buffalo seminal plasma protein and their effect on cauda epididymal spermatozoa. Anim. Reprod. Sci., 2005, vol. 90, issue 3–4., pp. 243–254. https://doi.org/10.1016/j.anireprosci.2004.12.014
  4. Badia E., Pinart E., Briz M. D., Pastor L. M., Sancho S., Garcia-Gil N., Kadar E., Bassols J., Pruneda A., Coll M. G., Bussalleu E., Yeste M., Bonet S. Lectin histochemistry of boar vesicular glands. Abstracts. Theriogenology, 2005, vol. 63, no. 2, pp. 366–367.
  5. Bassols J., Kádár E., Briz M., Pinart E., Sancho S., Garcia-Gil N., Badia E., Pruneda A., Bussalleu E., Yeste M., Casas I., Dacheux J. L., Bonet S. Evaluation of boar sperm maturation after co-incubation with caput, corpus and cauda epididymal cultures. Evaluation of boar sperm maturation in vitro. Theriogenology, 2005, vol. 64, issue 9, pp. 1995–2009. https://doi.org/10.1016/j.theriogenology.2005.05.027
  6. Belous A. M., Bondarenko V. A. Structural changes in biological membranes upon cooling. Kyiv, Naukova Dumka, 1982, 256 p. (in Russian)
  7. Bößenrodt K., Müller K., Stähr B. Effect of an increasing dilution rate on in vitro quality of liquid preserved boar semen. Theriogenology, 2008, vol. 70, issue 8, pp. 1392–1393. https://doi.org/10.1016/j.theriogenology.2008.06.055
  8. Brandts J. F. Heat effects on protein and enzymes. In: Theriogenology. London, Acad. Press, 1967, pp. 25–72.
  9. Chauvin T. R., Criswold M. D. Androgen-regulated genes in the murine epididymis. Biology of Reproduction, 2004, vol. 71, issue 2, pp. 560–569. https://doi.org/10.1095/biolreprod.103.026302
  10. Cheema S., Bansal A. K., Bilaspuri G. S., Gandotra V. K. Correlation on between the protein profile(s) of different regions of epididymis and their contents in goat buck. Animal Science Papers and Reports, 2011, vol. 29, no. 1. pp. 75–84.
  11. Crabo B. G. Post-testicular sperm maturation and its importance to deep freezing of boar semen. Proc. 1st Intern. Conf. On Deep Freezing of Boar Semen, Upsala, 1985, pp. 17–37.
  12. Dacheux F., Oble S., Venien A., Dacheux J. L. Purification and localization of a 27 kDa epididymal glycoprotein of the boar sperm surface. In: Bacetti B., ed. Comparative spermatology 20 years after. Raven Press, 1992, pp. 465–469.
  13. Dacheux J. L., Castella S., Gatti J. L., Dacheux F. Epididymal cell secretory activies and the role of protein in boar sperm maturation. Theriogenology, 2005, vol. 63, issue 2, pp. 319–341. https://doi.org/10.1016/j.theriogenology.2004.09.015
  14. Dacheux J. L., Dacheux F. Protein secretion in the epididymis. Ed. by B. Robaire, B. T. Hinton. The epididymis: From Molecules to clinical practice: A comprehensive. Survey of the Efferent Ducts. The Epididymis and the Vas Deferents, New York, Kluwer Academice, Plenum Publishers, 2002, pp. 151–168.
  15. Dacheux J. L., Gatti J. L., Castella S., Metayer S., Fouchecourt S., Dacheux F. The epididymal proteome. In: Hinton B., Turner T., eds. Epididymis III: the third international conference on the epididymis. Charlottesville, Virginia, The Van Doren Company, 2003, pp. 115–122.
  16. De Leeuw F. E., Colenbrander B., Vekleij A. J. The role membrane damage plays in cold shock and fertility injury. Reprod. Domest. Anim., 1990, suppl. 1, pp. 95–104.
  17. Elliott R. M. A., Duncan A., Watson P. F., Holt W. V., Fazeli A. R. Peripheral bound membrane proteins are involved the maintenance of boar sperm viability by oviductal apical plasma membrane preparations in vitro. Molecular Biology of the cell, 2001, vol. 12, p. 117a.
  18. Elliott R. M. A., Lloyd R. E., Fazeli A., Sostaric E., Georgiou A. S., Satake N., Watson P. F., Holt W. V. Effects of HSPA8, an evolutionarily conserved oviductal protein on boar and bull spermatozoa. Reproduction, 2009, vol. 137, issue 2, pp. 191–203. https://doi.org/10.1530/REP-08-0298
  19. Eriksson B. M., Peterson H., Rodríguez-Martínez H. Field Fertility with exported boar semen frozen in the new flatpack container. Theriogenology, 2002, vol. 58, issue 6, pp. 1065–1079. https://doi.org/10.1016/S0093-691X(02)00947-0
  20. Fazeli A. R., Elliott R. M. A., Duncan A. F., Moore A., Watson P. F., Holt W. V. In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations. Reproductions, 2003, vol. 125. no. 4, pp. 509–517. https://doi.org/10.1530/reprod/125.4.509
  21. Funahashi H., Sano T. Select antioxidant improve the function of extended boar semen stored at 10 °C. Theriogenology, 2005, vol. 63, issue 6, pp. 1605–1616. https://doi.org/10.1016/j.theriogenology.2004.06.016
  22. Gadea J., Sellés E., Marco M. A., Coy P., Matás C., Romar R., Ruiz S. Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced gluthatione to the freezing and thawing extenders. Theriogenology, 2004, vol. 62, issue 3–4, pp. 690–701. https://doi.org/10.1016/j.theriogenology.2003.11.013
  23. Galantino-Homer H., Modelski M., Dobrinski I. A quantative biochemical marker for cold shock damage to porcine sperm. Theriogenology, 2008, vol. 70, issue 3, p. 577. https://doi.org/10.1016/j.theriogenology.2008.05.013
  24. Gatti J.-L., Castella A. F., Dacheux F., Ecroyd H., Métayer S., Thimon V., Dauchex J.-L. Post-testicular sperm environment and fertility. Animal Reproduction Science, 2004, vol. 82–83, pp. 321–339. https://doi.org/10.1016/j.anireprosci.2004.05.011
  25. Gatti J. L., Druart X., Syntin P., Gúerin Y., Dacheux J.-L., Dacheux F. Biochemical characterization of two ram cauda epididumal maturation-dependent sperm glycoproteins. Biol. Reprod., 2000, vol. 62, issue 4, pp. 950–958. https://doi.org/10.1095/biolreprod62.4.950
  26. Georgiou A. S., Sostaric E., Wong C. H., Snijders A. P., Wright P. C., Moore H. D., Fazeli A. Gametes alter the oviductal secretory proteome. Molecular and cellular proteomics, 2005. vol. 4, no. 11, pp. 1785–1796. https://doi.org/10.1074/mcp.M500119-MCP200
  27. Harrison R. A. Sperm plasma membrane characteristics and boar semen fertility. Journal of Reprod. Fertil. Suppl., 1997. vol. 52, pp. 195–211.
  28. Hinton B. T., Pallaino M. A., Rudolph D., Cabus J. C. The epididymis as protector of maturing spermatozoa. Reproduction, Fertility and Development, 1995, vol. 7, no. 4, pp. 731–745. https://doi.org/10.1071/RD9950731
  29. Holt W. V., Elliott R. M. A., Fazeli A., Satake N., Watson P. F. Validation of an experimental strategy for studying surface-exposed protein involved in porcine sperm oviduct contact interactions. Reproduction, Fertility and Development, 2005, vol. 17, no. 7, pp. 683–692. https://doi.org/10.1071/RD05070
  30. Holt W. V., Elliott R. M. A., Fazeli A., Sostaric E., Georgiou A. S., Satake N., Rathalincam N., Watson P. F. Harnessing biology of the oviduct for the benefit of artificial insemination. Society of Reproduction and Fertility, 2006, vol. 62, pp. 247–259.
  31. Huang S. Y., Kuo Y. H., Lee Y. P., Tsou H. L., Lin. E. C., Ju C. C., Lee W. C. Association of heat shock protein 70 with semen quality in boars. Animal Reproduction Science, 2000, vol. 63, issue 3–4, pp. 231–240. https://doi.org/10.1016/S0378-4320(00)00175-5
  32. Huo L. J., Yue K. Z., Yang Z. M. Characterization viability, mitochondrial activity, acrosomal integrity and capacitation status in boar sperm during in vitro storage at different ambient temperatures. Reprod. Fertil. Dev., 2002, vol. 14, no. 8, pp. 509–514. https://doi.org/10.1071/RD02035
  33. Johnson L. A., Weitze K. F., Fiser P., Maxwell W. M. C. Storage of boar semen. Anim. Reprod. Sci., 2000, vol. 62, issue 1–3, pp. 143–172. https://doi.org/10.1016/S0378-4320(00)00157-3
  34. Kirchhoff C. Molecular characterization of epididymal proteins. Rev. Reprod., 1998, vol. 3, no. 2, pp. 86–95. https://doi.org/10.1530/ror.0.0030086
  35. Kornyat S. B. Sperm activity after addition to boar sperm extender organic sulfur-containing compounds. Scientific herald “Ascania-Nova”, 2012, issue 5, part 2, pp. 248–252. (in Ukrainian)
  36. Leninger A. Fundamentals of Biochemistry. In 3 vol. vol. 1, Moscow, Mir, 1985, 367 p. (in Russian)
  37. Marengo S. R. Maturing the sperm: Unique mechanisms for modifying integral proteins in the sperm plasma membrane. Animal Reproduction Science, 2008, vol. 105, issue 1–2, pp. 52–63. https://doi.org/10.1016/j.anireprosci.2007.11.018
  38. Meister A., Anderson M. E. Glutathione. Annual Review of Biochemistry, 1983, vol. 52. pp. 711–760. https://doi.org/10.1146/annurev.bi.52.070183.003431
  39. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu. Rev. Biochem., 1976, vol. 45, pp. 559–604. https://doi.org/10.1146/annurev.bi.45.070176.003015
  40. Melnyk Yu. F. Instruction on artificial insemination of pigs. Kyiv, Agrarian Science, 2003, 56 p. (in Ukrainian)
  41. Milovanov V. K. Biology of reproduction and artificial insemination of animals. Moscow, Publ. of agricultural literature, magazines and posters, 1962, 696 p. (in Russian)
  42. Moore H. D. M., Hibbitt K. G. Fertility of boar spermatozoa after freezing in the absence seminal vesicular proteins. J. Reprod. Fertil., 1977, vol. 50, no. 2, pp. 349–352. https://doi.org/10.1530/jrf.0.0500349
  43. Moore H. D. M., Hibbitt K. G. The binding of labeling basic proteins by boar spermatozoa. J. Reprod. Fertil., 1976, vol. 46, no. 1, pp. 71–76. https://doi.org/10.1530/jrf.0.0460071
  44. Nauk V. A. Structure and functions of sperm of agricultural animals in cryopreservation. Kishinev, Shtiinca, 1991, 200 p. (in Russian)
  45. Olson G. E., Nagdas S. K., Winfrey V. P. Structural differentiation of spermatozoa during post-testicular maturation. In: Robaire B., Hinton B. T., eds. The epididymis: From Molecules to clinical practice: A comprehensive survey of the Efferent Ducts. The Epididymis and the Vas Peferents, New York, Kluwer Academice, Plenum Publishers, 2002, pp. 371–387.
  46. Pérez‐Pé R., Grasa P., Fernández-Juan M., Peleato M. L., Cebrián‐Pérez J. Á., Muiño-Blanco T. Seminal plasma proteins reduce protein tyrosine phosphorylation in the plasma membrane of cold shocked ram spermatozoa. Mol. Reprod. Dev., 2002, vol. 61, issue 2, pp. 226–233. https://doi.org/10.1002/mrd.1152
  47. Phelps B. M., Koppel D. E., Primakoff P., Myles D. G. Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell. Biol., 1990, vol. 111, no. 5, pp. 1839–1847. https://doi.org/10.1083/jcb.111.5.1839
  48. Poiani A. Complexity of seminal fluid: a review. Behavioral Ecol. and Sociol., 2006, vol. 60, issue 3, pp. 289–310. https://doi.org/10.1007/s00265-006-0178-0
  49. Potts R. J., Notarianni L. J., Jefferies T. M. Seminal plasma reduces exogenous oxidative damage to human sperm, determined by the measurement of DNA strand breaks and lipid peroxidation. Mutat. Res., 2000, vol. 447, issue 2, pp. 249–256. https://doi.org/10.1016/S0027-5107(99)00215-8
  50. Pruneda A., Pinart E., Briz M. D., Sancho S., Bussalleu E., Yeste M., Casas I., Fàbrega A., Barrera X., Mas G., Bonet S. Effect of L-carnitine administration on the seminal characteristics of Pietrain boars. Theriogenology, 2008, vol. 70, issue 8, p. 1387. https://doi.org/10.1016/j.theriogenology.2008.06.044
  51. Pursel V. G., Johnson L. A., Rampacek G. B. Acrosome morphology of boar spermatozoa incubated before cold shock. J. Anim. Sci., 1972, vol. 34, issue 2, pp. 278–283. https://doi.org/10.2527/jas1972.342278x
  52. Pursel V. G., Johnson L. A., Schulman L. L. Effect of dilution, seminal plasma and incubation period on cold shock susceptibility of boar spermatozoa. J. Anim. Sci., 1973, vol. 37, issue 2, pp. 528–531. https://doi.org/10.2527/jas1973.372528x
  53. Pursel V. G., Johnson L. A., Schulman L. L. Interaction of extender composition and incubation period on cold shock susceptibility of boar spermatozoa. J. Anim. Sci. 1972, vol. 35, issue 3, p. 580–584. https://doi.org/10.2527/jas1972.353580x
  54. Pursel V. G., Schulman L. L., Johnson L. A. Effect of holding time on storage of boar spermatozoa at 5 °C. J. Anim. Sci., 1973, vol. 37, issue 3, pp. 785–789. https://doi.org/10.2527/jas1973.373785x
  55. Raeside J. L., Christie H. L., Renaud R. L. Androgen and estrogen metabolism in the reproductive tract and accessory sex gland of the domestic boar (Sus scrofa). Biol. Reprod., 1999, vol. 61, issue 5, pp. 1242–1248. https://doi.org/10.1095/biolreprod61.5.1242
  56. Rao A. V., Shaha C. Role of glutathione S-transferases in oxidative stress-induced male germ cell apoptosis. Free Radic. Biol. Med., 2000, vol. 29, issue 10, pp. 1015–1027. https://doi.org/10.1016/S0891-5849(00)00408-1
  57. Robaire B., Hermo L. Efferents ducts, epididymis and vas deferens: structure, functions and their regulation. In: Knobil E., Neill J. D. (eds.) The Physiology of Reproduction. New York, Raven Press, 1988, pp. 999–1089.
  58. Robertson L., Watson P. F. Calcium transport in diluted or cooled ram semen. J. Reprod. Fertil., 1986, vol. 77, no. 1, pp. 177–185. https://doi.org/10.1530/jrf.0.0770177
  59. Rodríguez-Martínez H., Kvist U., Ernerudh J., Sanz L., Calvete J. J. Seminal plasma proteins: what role do they play? American Journal of Reproduction Immunology, 2011, vol. 66, issue s1, pp. 11–22. https://doi.org/10.1111/j.1600-0897.2011.01033.x
  60. Rodríguez-Martínez H., Kvist U., Saravia F., Wallgren M., Roca J., Vazquez I. M., Calvete J. J. The physiological roles of the boar ejaculate. In: H. Rodríguez-Martínez, J. L. Vallet, A .J. Ziecik (eds.). Control of Pig Reproduction. VIII, Nottingham, UK, Nottingham University Press, 2009, pp. 1–21.
  61. Rodríguez-Martínez H. Role of the oviduct in sperm capacitation. Theriogenology, 2007, vol. 68, suppl. 1, pp. S138–S146. https://doi.org/10.1016/j.theriogenology.2007.03.018
  62. Rodríguez-Martínez H., Saravia F., Wallgren M., Martinez E. A., Sanz I., Roca J., Vazquez I. M., Calvete J. J. Spermadhesin PSP-I / PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. Journal of Reprod. Immunol., 2010, vol. 84, issue 1, pp. 57–65. https://doi.org/10.1016/j.jri.2009.10.007
  63. Rodríguez-Martínez H., Saravia F., Wallgren M., Roca J., Peña F. J. Influence of seminal plasma on the kinematics of boar spermatozoa during freezing. Theriogenology, 2008, vol. 70, issue 8, pp. 1242–1250. https://doi.org/10.1016/j.theriogenology.2008.06.007
  64. Rodríguez-Martínez H., Saravia F., Wallgren M., Tienthai P., Johannisson A., Vázquez J. M., Martínez E., Roca J., Sanz I., Calvete J. J. Boar spermatozoa in the oviduct. Theriogenology, 2005, vol. 63, issue 2, pp. 514–535. https://doi.org/10.1016/j.theriogenology.2004.09.028
  65. Satake N., Elliott R. M. A., Watson P. F., Holt W. V. Sperm selection and competition in pigs may by mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct. Journal of Experimental Biology, 2006, vol. 209, part 8, pp. 1560–1572. https://doi.org/10.1242/jeb.02136
  66. Shostya A. M. Role of active oxygen forms in spermatogenesis regulation and fertilization in mammals. Ukrainian Biochemistry Journal, 2009, vol. 81, no. 1, pp. 14–22. (in Ukrainian)
  67. Singleton W. L. State of art in artificial insemination of pigs in the United States. Theriogenology, 2001, vol. 56, issue 8, pp. 1305–1310. https://doi.org/10.1016/S0093-691X(01)00631-8
  68. Strzeżek J., Frazer L., Kuklińska M., Dziekońska A., Lecewicz M. Effect of dietary supplementation with polyunsaturated fatty acids and antioxidant on biochemical characteristics of boar semen. Reproductive Biology, 2004, vol. 4, no. 3, pp. 271–287.
  69. Strzeżek J., Lapkiewicz S., Lecewicz M. A note on antioxidant capacity of boar seminal plasma. Anim. Sci. Papers Rep., 1999, vol. 17, no. 4, pp. 181–188.
  70. Strzeżek J. Secretory activity of boar seminal vesicle glands. Reproductive Biology, 2002, vol. 2, no. 3, pp. 243–266.
  71. Sullivan R., Saez L., Girouard J., Frenette G. Role of exosome in sperm maturation during the transit along the male reproduction tract. Blood Cells Molecular Discovery, 2005, vol. 35, issue 1, pp. 1–10. https://doi.org/10.1016/j.bcmd.2005.03.005
  72. Syntin P., Dacheux F., Druart X., Gatti J. L., Okamura N., Dacheux J. L. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol. Reprod., 1996, vol. 55, issue 5, pp. 956–974. https://doi.org/10.1095/biolreprod55.5.956
  73. Szcześniak-Fabiańczyk B., Bochenek M., Smorąg Z., Ryszka F. Effect of antioxidant added to boar semen extender on the semen survival time and sperm chromatin structure. Reproductive Biology, 2003, vol. 3, no. 1, pp. 81–87.
  74. Ting-Kai L. I. The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biology of Reproduction, 1975, vol. 12, issue 5, pp. 641–646. https://doi.org/10.1095/biolreprod12.5.641
  75. Tomes C. N., Carballada R., Moses D. F., Katz D. F., Saling P. M. Treatment of human spermatozoa with seminal plasma inhibits protein tyrosine phospsorylation. Mol. Hum. Reprod., 1998, vol. 4, issue 1, pp. 17–25. https://doi.org/10.1093/molehr/4.1.17
  76. Töpfer-Petersen E., Ekhlasi-Hundrieser M., Kirchhoff C., Leeb T., Sieme H. The role of stallion seminal plasma proteins in fertilization. Anim. Reprod. Sci., 2005, vol. 89, issue 1–4, pp. 159–170. https://doi.org/10.1016/j.anireprosci.2005.06.018
  77. Troedsson M. H., Desvousges A., Alghamdi A. S., Dahms B., Dow. C. A., Hauna I., Valesco R., Collahan P. T., Macpherson M. J., Pozor M., Buhi W. C. Components in seminal plasma regulating sperm transport and elimination. Anim. Reprod. Sci., 2005, vol. 89, issue 1–4, pp. 171–186. https://doi.org/10.1016/j.anireprosci.2005.07.005
  78. Vadnais M. L., Kirkwood R. N., Sprecher D. J., Chou K. Effect of extender, incubation temperature and added seminal plasma on capacitation of cryopreserved thawed boar sperm as determined by chlortetracycline staining. Anim. Reprod. Sci., 2005, vol. 90, issue 3–4, pp. 347–354. https://doi.org/10.1016/j.anireprosci.2005.02.007
  79. Vadnais M. L., Roberts K. P. Effects of seminal plasma on cooling-induced capacitative changes in boar sperm. J. Androl., 2007, vol. 28, issue 3, pp. 416–422. https://doi.org/10.2164/jandrol.106.001826
  80. Vreeburg J. T., Holland M. K., Cornwall G. A., Rankin T. L., Orgebin Crist M. C. Secretion of epididymal proteins and their interactions with spermatozoa. Bull. Assoc. Anat. (Nancy), 1991, vol. 75, pp. 171–173.
  81. Watson P. F. Cooling of spermatozoa and fertilizing capacity. In: Rath D. Johnson L. A., Weitze K. F. (eds.). Boar Semen Preservation. III Proc. 3rd Int. Conf. Boar Semen Preservation, Mariensee, Germany, August, 1995, Reprod. Domest. Anim. Blackwell, Berlin, 1996, vol. 31, pp. 135–140.
  82. Witte T. S., Shäfer-Somi S. Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa. Animal Reproduction Science, 2007, vol. 102, no. 3–4, pp. 181–193. https://doi.org/10.1016/j.anireprosci.2007.07.007
  83. Wysocki P., Strzeżek J. Preliminary studies on phosphoproteins of boar spermatozoa. Article in Theriogenology, 2005, vol. 63, pp. 365–366.
  84. Wysocki P., Strzeżek J. Purification and characterization of a protein tyrosine acid phosphatase from boar seminal vesicle glands. Theriogenology, 2003, vol. 59, issue 3–4, pp. 1011–1025. https://doi.org/10.1016/S0093-691X(02)01121-4
  85. Yashisa Y., Mutsuo O. Localization of the sperm coating antigen on boar spermatozoa. Jap. J. Zootechn. Sci., 1973, vol. 44, no. 1, pp. 75–78.
© 2016 Institute of Animal Biology