Bìol. Tvarin, 2017, Volume 19, Issue 2, pp. 23–29

EFFECT OF FAT CONTENT IN COWS DIET AND pH OF RUMEN ON RUMINAL FERMENTATION AND FATTY ACID COMPOSITION OF MILK FAT

V. Hultyayeva1, A. P. Petruk2, V. V. Vlizlo1

1Institute of Animal Biology NAAS,
38 Stusa str., Lviv 79034, Ukraine

2Lviv National University of Veterinary Medicine and Biotechnologies
named after S. Z. Gzhytsky,
50 Pekarska str., Lviv 79010, Ukraine

For the experiment four groups of Ukrainian black and white dairy cows with average milk yield 6000 kg per lactation were used with five animals in each group. The duration of the experiment was from the last month of pregnancy till the first month after calving. The 1st and the 3rd group received typical in nutrient balanced diet. In the diets of the 2nd and 4th group cows the amount of fat was increased by 30 % by replacing of soybean meal with full-fat soybeans at constant protein content. Additionally, diets of the 2nd and the 4th group cows were supplemented with 100 g of sodium bicarbonate, 50 g of calcium carbonate and 50 g of magnesium carbonate for regulating the pH of rumen contents.

Adding a buffer mixture decreases ammonia concentration by 15 % (P<0.05) and concentration of lactate by 20 % (P<0.01) in the rumen of cows fed with diet containing soybean meal. In the rumen of cows fed with diet containing soybeans and buffer the lactate concentration decreased by 18 % (P<0.05). Dietary supplement of buffer mixture led to increase of butyric acid content in milk of cows in 2nd and 4th groups and reduced 18:1, 18:2, 18:3 and 20:4 acids content in the milk (P<0,05–0,01) on the diet with soybean meal. Higher content of fat in the cows’ diet the parts of oleic (cis-9 18:1) and linoleic (cis-9,12 18:2) acids (P<0.05) in the milk increased. The buffer feed mixture reduced the proportion of these acids on both diets (P<0.05). Replacement of soybean meal with full-fat soybeans increased the total content of trans-isomers of unsaturated fatty acids in milk 1.7 times (P<0.001). Adding buffer mixture reduced these acids content (P<0.05). Feeding the buffer mixture reduced part of trans-10 but increased part of trans-11 isomer fatty acids in milk (P<0.05–0.001). The total cis-isomers unsaturated fatty acids content in milk cows of all groups differed insignificantly.

Keywords: COW, RUMEN, MILK, pH, FATTY ACIDS

  1. Alfonso-Avila A. R., Charbonneau É., Chouinard P. Y, Tremblay G. F., Gervais R. Potassium carbonate as a cation source for early-lactation dairy cows fed high-concentrate diets. J. Dairy Sci., 2017, vol. 100 (3), pp. 1751–1765. https://doi.org/10.3168/jds.2016-11776
  2. An J. K, Kang C. W., Izumi Y. Effects of dietary fat sources on occurrences of conjugated linoleic acid and trans fatty acids in rumen contents. Asian-Australasian Journal of Animal Science, 2003, vol. 16, pp. 222–226. https://doi.org/10.5713/ajas.2003.222
  3. Bell J. A., Griinari J. M., Kennelly J. J. Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat. J. Dairy Sci., 2006, vol. 89, no. 2, pp. 733–748. https://doi.org/10.3168/jds.S0022-0302(06)72135-X
  4. Chouinard P. Y., Corneau L., Barbano D. M. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr., 1999, vol. 129, pp. 1579–1584. https://doi.org/10.1093/jn/129.8.1579
  5. Cruywagen C. W, Taylor S., Beya M. M., Calitz T. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. J. Dairy Sci., 2015, vol. 98, no. 8, pp. 5506–5514. https://doi.org/10.3168/jds.2014-8875
  6. Golubets O. V., Vudmaska I. V. Milk fatty acid profile of cows fed sodium bicarbonate addition to diets with different nonstructural carbohydrate composition. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky, 2009, vol. 11, no. 2 (41), pp. 61–65. (in Ukrainian)
  7. Golubets O. V. Vudmaska I. V. Determination of lipid fatty acid composition by capillary gas-liquid chromatography. Guidelines. Lviv, 2010, 34 p. (in Ukrainian)
  8. Hultyayeva A. V., Golova N. V., Vlizlo V. V. Effect of pH on soybean, sunflower and rapeseed oil-cakes fermentation in the rumen of cattle in vitro. The Animal Biology, 2014, vol. 16, no. 4, pp. 37–42. (in Ukrainian)
  9. Khorasani G. R. Kennelly J. J. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. J. Dairy Sci., 2001, vol. 84, pp. 1707–1716. https://doi.org/10.3168/jds.S0022-0302(01)74606-1
  10. Kritchevsky D. Antimutagenic and some other effects of conjugated linoleic acid. Br.J. Nutr., 2000, vol. 83, no. 5, pp. 459–465.
  11. Mao S., Huo W., Liu J., Zhang R., Zhu W. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota. J. Sci. Food Agric., 2017, vol. 97 (4), pp. 1276–1285. https://doi.org/10.1002/jsfa.7861
  12. Offer N. W., Marsden M., Phipps R. H. Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Anim. Sci., 2001, vol. 73, pp. 533–540. https://doi.org/10.1017/S1357729800058501
  13. Palmquist D. L., Lock A. L, Shingfield K. J. Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv. Food Nutr. Res., 2005, vol. 50, pp. 179–217. https://doi.org/10.1016/S1043-4526(05)50006-8
  14. Toral P. G., Bernard L., Belenguer A., Rouel J., Hervás G., Chilliard Y., Frutos P. Comparison of ruminal lipid metabolism in dairy cows and goats fed dietssupplemented with starch, plant oil, or fish oil. J. Dairy Sci., 2016, vol. 99 (1), pp. 301–316. https://doi.org/10.3168/jds.2015-10292
  15. Toral P. G., Chilliard Y., Rouel J., Leskinen H., Shingfield K. J., Bernard L. Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. J. Dairy Sci., 2015, vol. 98 (10), pp. 7277–7297. https://doi.org/10.3168/jds.2015-9649
  16. Urrutia N., Harvatine K. J. Effect of conjugated linoleic acid and acetate onmilk fat synthesis and adipose lipogenesis in lactating dairy cows. J. Dairy Sci., 2017, vol. 10, pp. S0022–0302(17)30402–2.
  17. Vlizlo V. V., Fedoruk R. S., Ratych I. B. Laboratory methods of research in biology, veterinary medicine. Lviv, Spolom, 2012, pp. 355–368. (in Ukrainian)
  18. Vudmaska I. V. Fats in high-productive cows nutrition. Husbandry of Ukraine, 2006, no. 9, pp. 24–27. (in Ukrainian)
  19. Vudmaska I., Vlizlo V., Golubets O. Effect of dietary sodium bicarbonate on fatty acid isomers content in rumen fluid and milk of cows. Folia veterinaria, 2009, 53, 1, pp. 258–259.

Download full text in PDF format

gslogoICLOGO

cr

nbuv

WorldCat Logo

oa

Search