Bìol. Tvarin, 2017, Volume 19, Issue 1, pp. 100–110

ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISM IN THE CALPAIN/CALPASTATIN SYSTEM GENES WITH QUANTITATIVE TRAITS OF ABERDEEN-ANGUS

S. Ruban1, O. Fedota2, N. Lysenko2, A. Kolіsnik3, І. Goraichuk4, L. Ponko5

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Animal Breeding and Genetics named after M. V. Zubets NAAS,
1 Pogrebnyaka str., Chubynske, Kyiv region, 08321, Ukraine

2V.N.Karazin Kharkiv National University,
4 Svobody sq., Kharkiv 61022, Ukraine

3PE «Agrofirma Svitanok»,
11 Marksa str., Novoselivka, Kharkiv region, 63209, Ukraine

4National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”,
83 Pushkinska str., Kharkiv 61023, Ukraine

5State agrarian and engineering university in Podilya,
13 Shevchenko str., Kamyanets-Podilsky, Khmelnytsky region, 32300, Ukraine

Pleiotropic effect of calpain/calpastatin system genes influences both animal’s quantitative traits and qualitative characteristics of muscle tissue. The study is aimed to evaluate the association of single nucleotide polymorphisms CAPN316 and CAST282 in calpain and calpastatin genes with quantitative traits the body weight dynamics.

The body weight dynamics from birth until 5 years of age was evaluated in Aberdeen-Angus cows (n=73) in Kharkiv region. Molecular genetic analysis was performed by PCR-RFLP. Distributions was analyzed with χ² criterion, ANOVA was used for multiple comparisons. The influence of individual factor was evaluated by Snedecor (h2). Differences between Aberdeen Angus groups was studied by Nei’s standard genetic distances.

Allele frequencies of SNP CAPN316 are C=0.404 and G=0.586, of SNP CAST282 are C=0.788 and G=0.212. The genotypic distributions were in agreement with the Hardy-Weinberg equilibrium. There were significant impact of CAPN316 CC genotype on body weight at the age of three (F=3.57; h2=46%) and four years (F=3.70; h2=47%) and CAST282 CG genotype on body weight at the age of 15 months (F=3.29; h2=43%). Effect of calpain and calpastatin genes C-alleles on weight gain increases after the age of two years, when the expression of genes regulating growth and development processes at an early age is reduced. Animal selection at the age of two years aimed to the meat quality improvement is unlikely to lead to significant body weight decrease.

Keywords: ABERDEEN-ANGUS, CALPAIN, CALPASTATIN, CAPN316, CASTS282, BODY WEIGHT

1. Aali M., Moradi-Shahrbabak M, Moradi-Shahrbabak H., Sadeghi M. Detecting novel SNPs and breed-specific haplotypes at calpastatin gene in Iranian fat- and thin-tailed sheep breeds and their effects on protein structure. Gene, 2014, vol. 537, no. 1, pp. 133–141. DOI: 0.1016/j.gene.2013.12.023.
2. Atramentova L. A., Utyevska A. M. Statistical methods in biology: Textbook. Kharkiv, KhNU named after V. N. Karazin, 2007, 288 p. (in Ukrainian)
3. Carruthers C. R. Comparison of Canadian and international Angus Cattle populations using gene variants and microsatellites. MSc thesis. Saskatoon, Canada, 2009, 77 p. Available at: http://ecommons.usask.ca/bitstream/handle/10388/etd-10262009-135855/CCarruthersThesis.pdf.
4. Casas E., White S. N., Wheeler T. L., Shackelford S. D., Koohmaraie M., Riley D. G., Chase Jr. C. C., Johnson  D. D., Smith T. P. L. Effects of calpastatin and calpain markers in beef cattle on tenderness traits. Journal of Animal Science, 2006, vol. 84, pp. 520–525. https://doi.org/10.2527/2006.843520x
5. Cox N. J. Calpain 10 and genetics of type 2 diabetes. Current Diabetes Reports, 2002, vol. 2, no. 2, pp. 186–190. https://doi.org/10.1007/s11892-002-0079-1
6. Cruzen S. M. Characterization of the skeletal muscle calpain/calpastatin system in growth models in swine and cattle. PhD diss. Ames, Iowa, 2013, 196 p. Available at: http://lib.dr.iastate.edu/etd Paper 13305.
7. Dobrianska M. L., Dshus P. P., Podoba Y. V., Kopylov K. V., Kopylova K. V., Sydorenko O. V., Yudin N. S. Interpedigree differentiation in beef cattle bt the frequencues of alleles and genotypes of calpain gene. Bulletin of Vavilov Society of Geneticists and Breeders, 2013, vol. 11, no. 1, pp. 53–57. (in Ukrainian)
8. Gan-Or Z., Bouslam N., Birouk N., Lissouba A., Chambers D. B., Verlepe J., Androschuk A., Laurent S. B., Rochesfort D., Spiegelman D., Dionne-Laporte A., Szuto A. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. The American journal of human genetics, 2016, vol. 98, pp. 1038–1046. https://doi.org/10.1016/j.ajhg.2016.04.002
9. Gill J. L., Bishop S. C., McCorquodale C., Williams J. L., Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genetics Selection Evolution, 2009, 41:36. DOI: 10.1186/1297-9686-41-36. https://doi.org/10.1186/1297-9686-41-36
10. Goll D. E., Thompson V. F., Li H., Wei W., Cong J. The calpain system. Physiological Review, 2003, vol. 83, pp. 731–801. https://doi.org/10.1152/physrev.00029.2002
11. Gomes R. C., Silva S. L., Carvalho M. E., Rezende F. M., Pinto L. F. B., Santana M. H. A., Stella T. R., Meirelles F. V., Rossi Júnior P., Leme P. R., Ferraz J. B. S. Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Genetics and Molecular research, 2013, vol. 12, no. 3, pp. 2923–2936. https://doi.org/10.4238/2013.August.12.8
12. Grebinyk D. M. Calpain structural and distributional features as their classification basis. Physics of alive, 2012, vol. 20, no. 1–2, pp. 4–8. (in Ukrainian)
13. Grishina D. A., Suponeva N. A., Shvedkov A. V., Belopasova A. V. Inherited progressive limb-girdle muscular dystrophy type 2A (calpainopathy): a review of literature. Neuromuscular diseases, 2015, no. 1, pp. 25–36. DOI: 10.17650/2222-8721-2015-1-25-36. (in Russian)
14. Kolisnyk A. I., Lysenko N. G., Mesyats T. K., Ruban S. Y., Fedota A. M. Genealogical analysis of quantitative traits in Aberdeen-Angus. Bulletin of Vavilov Society of Geneticists and Breeders, 2004, vol. 12, no. 2, pp. 256–263. (in Russian)
15. Leveau C. Candidate genes for beef quality — allele frequencies in Swedish beef cattle. MSc thesis. Canada, 2008, 48 p. Available at: http://ex-epsilon.slu.se:8080/archive/00002686/01/301_Carina_Leveau.pdf.
16. Miquel M. C., Villareal E., Mezzadra C., Melucci L., Soria L., Corva P., Schor A. The association of CAPN1 316 marker genotypes with growth and meat quality traits of steers finished on pasture. Genetics and Molecular Biology, 2009, vol. 32, no. 3, pp. 491–496. https://doi.org/10.1590/S1415-47572009000300011
17. Nakamura Y., Fukiage C., Shih M., Ma H., David L. L., Azuma M., Shearer T. R. Contribution of calpain Lp82-induced proteolysis to experimental cataractogenesis in mice. Investigative Ophthalmology & Visual Science, 2000, vol. 41, pp. 1460–1466.
18. Nei M. Genetic distance between populations. The American Naturalist, 1972, vol. 106, pp. 283–292. https://doi.org/10.1086/282771
19. Pintos D., Corva P. M. Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Animal Genetics, 2011, vol. 42, pp. 329–332. https://doi.org/10.1111/j.1365-2052.2010.02160.x
20. Schenkel F. S., Miller S. P., Jiang Z., Mandell I. B., Ye X., Li H., Wilton J. W. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. Journal of Animal Science, 2006, vol. 84, pp. 291–299. https://doi.org/10.2527/2006.842291x
21. Soria L. A., Corva P. M., Huguet M. J., Miño S., Miquel M. C. Bovine μ-calpain (CAPN1) gene polymorphisms in Brangus and Brahman bulls, 2010, Journal of Basic & Applied Genetics, vol. 21, no. 1, pp. 61–69.
22. Sorimachi H., Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovascular Research, 2012, vol. 96, pp. 11–22. https://doi.org/10.1093/cvr/cvs157
23. Storr S. J., Thompson N, Pu X., Zhang Y., Martin S. G. Calpain in Breast Cancer: Role in Disease Progression and Treatment Response. Pathobiology, 2015, vol. 82, no. 3–4, pp. 133–141. https://doi.org/10.1159/000430464
24. Tidbal J. G., Spencer M. J. Calpains and muscular dystrophies. The international journal of biochemistry and cell biology, 2000, vol. 32, no. 1, pp. 1–5. https://doi.org/10.1016/S1357-2725(99)00095-3
25. Tretiak B. I. Mutations observed at human undifferential progressive  inherited neuromuscular disorders. PhD. biological sci. thesis. Kyiv, 2014, 20 p. (in Ukrainian)
26. Van Eenennaam A. L., Li J., Thallman R. M., Quaas R. L., Dikeman M. E., Gill C. A., Franke D. E., Thomas M. G. Validation of commercial DNA tests for quantitative beef quality traits. Journal of Animal Science, 2007, vol. 85, pp. 891–900. https://doi.org/10.2527/jas.2006-512
27. Van Eenennaam A. L. Value of DNA information for beef bull selection. Commercial Tests for Marker-Assisted Selection in Beef Cattle, 2010. Available at: http://169.237.28.91/AnimalBiotech/biotechnology/mas/Value_of_DNA_information_for_beef_bull_selection_final[1].pdf.
28. National Animal Genome Research Program: NRSP-8 Bioinformatics Coordination Program. Electronic resource: http://www.animalgesnome.org.

Download full text in PDF format

© 2016 Institute of Animal Biology

Search