Bìol. Tvarin, 2017, Volume 19, Issue 1, pp. 16–23

http://doi.org/10.15407/animbiol19.01.016

DETERMINATION OF ANTIBACTERIAL PROPERTIESOF TRIAZINES IN REGARDS TO SALMONELLA TYPHIMURIUM

M. M. Babkina1,4, O. V. Vasylchenko2, O. M. Deriabin3, A. A. Tarasov4,
A. M. Golovko3, L. G. Palchykovska2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Animal Biology NAAS,
38 V. Stus
str., Lviv 79034, Ukraine

2Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine,
150 Akademika Zabolotnoho str., Kyiv 03680, Ukraine

3State Scientific Control Institute of Biotechnology and States of Microorganisms,
30 Donetska str., Kyiv 03151, Ukraine

4Institute of Veterinary Medicine NAAS,
30 Donetska str., Kyiv 03151, Ukraine

The results of the study of antibacterial activity and determining minimum inhibitory concentrations triazines classes by microdilution method against a Salmonella typhimurium are described in the article. The antimicrobial activity of the triazines class substances was investigated by disk diffusion method. An antibacterial activity of triazines to museum strain Salmonella typhimurium was established. The presence of the susceptibility of Salmonella typhimurium to the tested compounds has been revealed.

The monocyclic and threecyclic triazines compounds classes were used. We chose eleven the most perspective substances with some difference due to position of radical groups and its composition recording the results of the research.

As result of investigations the Minimal Inhibitory Concentration and growth inhibition zone of monocyclic and threecyclic triazines class substances were identified. The Minimal Inhibitory Concentration was detected at range from 0.41±0.005 mg/сm3 to 0.0041±0.00007 mg/cm3 and growth zone diameter from 9.3±0.49 mm to 24±0.36 mm.

The most active compounds tested of substances regards to Salmonella typhimurium were ODI-8 (6-[(4-aminophenyl)amino]-1,2,4-triazine-3,5(2H,4H)-dione), ODI-13 (6-[(4-isopropoxyphenyl)amino]-1,2,4-triazine-3,5(2H,4H)-dione), ODI-45 (7-methyl-3-oxo-2,3-dihydro-1H-[1,2,4]triazino[5,6-b][1,4]benzothiazine-9-carboxylic acid) and ODI-60 (7-methyl-3-oxo-N-pyrimidin-2-yl-2,3-dihydro-1H-[1,2,4]triazino[5,6-b][1,4]benzothiazine-9-carboxamide) with a minimum inhibitory concentration 0.0041 mg/cm3 and the diameter of growth inhibition zone from 22.6±0.61 mm to 24±0.36 mm. ODI-11 has activity with a minimum inhibitory concentration 0.041 mg/cm3 and the diameter of growth inhibition zone 21.1±0.47 mm.

The compounds ODI-5, ODI-10, ODI-14, ODI-15, ODI-50 and ODI-58 which differ by nature and position of the radicals, demonstrated low level of antibacterial activity with a minimal concentration 0.41 mg/cm3. The diameter of the zones of growth inhibition for these compounds was from 9.3±0.49 mm to 11.3±0.49 mm.

The compounds ODI-1, ODI-2, ODI-3, ODI-4, ODI-6, ODI-7, ODI-9, ODI-12, ODI-46, ODI-47, ODI-48, ODI-49, ODI-51, ODI-52, ODI-53, ODI-54, ODI-55, ODI-56, ODI-57, ODI-59 did not demonstrate any activity against Salmonella typhimurium.

Keywords: MICROORGANISM, SALMONELLA TYPHIMURIUM, MINIMAL INHIBITORY CONCENTRATION, ANTIBACTERIAL PROPERTIES, TRIAZINES

1. Abdel-Rahman R. M., Morsy J. M., Hanafy F., Amene H. A. Synthesis of heterobicyclic nitrogen systems bearing the 1,2,4-triazine moiety as anti-HIV and anticancer drugs: part I. Pharmazie, 1999, vol. 54, pp. 347–351.
2. Alekseev S. G., Charushin V. N., Chupakhin O. N., Aleksandrov G. G., Shorshnev S. V., Chernishev A. I. Cyclizations of azinie’s cations with bifunctional nucleophiles, 1989, vol. 7, p. 16–37. (in Russian)
3. ASM Task Force on Antibiotic Resistance. In: Report of the American Society for Microbiology Task Force on Antibiotic Resistance. American Society for Microbiology, Washington, DC; 1994: pp. 3–6. http://www.asm.org/ASM/files/CCPAGECONTENT/DOCFILENAME/0000005962/antibiot%5B1%5D.pdf.
4. Barraja P., Diana P., Lauria A., Almerico A. M., Dattolo G., Cirrincione G. 2-Diazoindoles: building blocks for the synthesis of antineoplastic agents. Farmaco, 2002, vol. 57, pp. 97–100. https://doi.org/10.1016/S0014-827X(01)01175-2
5. Charushin V. N., Chupakhin O. N., van der Plas H. C. Reactions of azines with bifunctional nucleophiles. Cyclizations and ring transformations. Advances in Heterocyclic Chemistry, 1988, vol. 43, pp. 301–353. https://doi.org/10.1016/S0065-2725(08)60256-1
6. Charushin V. N., Alexeev S. G., Chupakhin O. N., van der Plas H. C. Behavior of monocyclic 1,2,4-Triazines in reactions with C-, N-, O- and S-Nucleophiles. Advances in Heterocyclic Chemistry, 1989, vol. 46, pp. 73–142. https://doi.org/10.1016/S0065-2725(08)60797-7
7. Chupakhin O. N., Alexeev S. G., Rudakov B. V., Charushin V. N. Recent advances in the chemistry of as triazinium salts. Heterocycles, 1992, vol. 33, pp. 931–972. (in Russian) https://doi.org/10.3987/REV-91-SR1
8. Chupakhin O. N., Beresenev D. N. The nucleophilic attack on an unsubstituted atom of carbon of azines and nitroarenes — effective methodology for construction heterocyclic system. Success of chemistry, 2002, vol. 71, no. 9, pp. 803–818. (in Russian)
9. Classification of salmonells. Functional gastroenterology. Available at: http://www.gastroscan.ru/handbook/118/3287. (in Russsian)
10. Devasahayam G., Scheld W. M., Hoffman P. S. Newer antibacterial drugs for a new century. Expert Opinion on Investigational Drugs, 2010, 9, pp. 215–234. https://doi.org/10.1517/13543780903505092
11. Diana P., Barraja P., Lauria A., Montalbano A., Almerico A. M., Dattolo G., Cirrincione G. Pyrrolo-2,1-c-[1,2,4]triazines from 2-diazopyrroles: synthesis and antiproliferative activity. European Journal of Medicinal Chemistry, 2002, vol. 37, pp. 267–272. https://doi.org/10.1016/S0223-5234(02)01339-9
12. Elashry Esh., Rashed N., Taha M., Ramadan E. Condensed 1,2,4-triazines. Fused to heterocycles with 3-membered, 4-membered and 5-membered rings. Advances in heterocyclic chemistry, 1994, vol. 59, pp. 39–177. https://doi.org/10.1016/S0065-2725(08)60007-0
13. Elashry Esh., Rashed N., Mousaad A., Ramadan E. Condensed 1,2,4-triazines. Fused to heterocycles with 6-membered and 7-membered rings and fused to 2 heterocyclic rings. Advances in heterocyclic chemistry, 1994, vol. 61, pp. 207–328. https://doi.org/10.1016/S0065-2725(08)60899-5
14. Issartel V., Coudert P., Rubat C., Nhamias S., Couquelet J. Synthesis of thiazolotriazine derivatives and their antinociceptive effects in mice. Journal of Pharmacy and Pharmacology, 1998, vol. 50, pp. 575–582. https://doi.org/10.1111/j.2042-7158.1998.tb06890.x
15. Kozhevnikov D. N., Rusinov V. L., Chupakhin O. N. 1,2,4-triazine N-oxides. Advances in heterocyclic chemistry, 2002, vol. 82, pp. 261–305. (in Russian) https://doi.org/10.1016/S0065-2725(02)82029-3
16. Lorian V. Antibiotics in laboratory medicine. Baltimore, Williams and Wilkins, 1996, 642 p.
17. Monge A., Martinezmerino V., Sanmartin C., Ochoa M. C., Fernan-Dezalvarez E. New 5H-l,3-thiazolo[3,2-<z]pyrido[3,2-e]pyrimidine derivatives as diuretics. Arzneimittelforschung, 1990, vol. 42, pp. 1349–1352.
18. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests. 4th Edition, Approved Standard M2-A4. NCCLS, Villanova, PA, 1990.
19. Neunhoeffer H. 1,2,4-Triazines in the chemistry of 1,2,3-triazines and 1,2,4-triazines, tetrazines and pentazines. The Chemistry of Heterocyclic Compounds, 1978, p. 189.
20. Neunhoeffer H. 1,2,4-triazines and their benzo derivatives. Comprehensive Heterocyclic Chemistry, 1984, p. 385.
21. Neunhoeffer H. 1,2,4-triazines and their benzo derivatives. Comprehensive Heterocyclic Chemistry II, 1996, vol. 6, p. 507. https://doi.org/10.1016/B978-008096518-5.00127-1
22. Ochoa C., Coya P. Six-membered ring systems: triazines and fused ring polyaza systems. Progress in Heterocyclic Chemistry, 2002, 14, pp. 310–331. https://doi.org/10.1016/S0959-6380(02)80016-2
23. Salmonella (not-typhoid). Information bulletin of WHO. Available at: http://www.who.int/mediacentre/factsheets/fs139/ru. (in Russian)
24. Sanemitsu Y., Mizutani M., Nakayama Y. A synthetic approach to novel S,N-heterocycles with biological activities. Journal of Synthetic Organic Chemistry, Japan, 1992, vol. 50, pp. 875–886. https://doi.org/10.5059/yukigoseikyokaishi.50.875
25. Sobko A. I., Pavlov E. G. Veterinary technology in the industrial pig production: a practical handbook. Kyiv, UkrINITEI, 1994, p. 192. (in Ukrainian)
26. Vasilev V. S., Volosach O. S., Malanova V. S., Pivovarchik R. A., Pozniak S. B., Poluden I. N., Tsyrkunov V. M. Hospital (intranspecial) salmonellosis nosoparazitizm in children: (instructions for use). 2002, 21 p. (in Russian)
27. Weidemann B. Evaluation of data from susceptibility testing. International journal of antimicrobial agent, 1998, 10, pp. 218–219.
28. Yakovlev V. P., Yakovlev S. V. Prospects for establishment and implementation of new antimicrobial drugs. Inflectional and antimicrobial therapy, 2002, vol. 4, no. 2, pp. 24–30. (in Russian)

Download full text in PDF format

© 2016 Institute of Animal Biology

Search