UDC 577.112: 577.122: 579.222                                  http://dx.doi.org/10.15407/animbiol18.04.078


M. Y. Sabat1, R. Ya. Iskra2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Lviv National University of Veterinary Medicine
and Biotechnologies named after S. Z. Gzhytskyj,
50 Pekarska str., Lviv 79010, Ukraine

2Institute of animal biology NAAS,
38 Stus str., Lviv 79034, Ukraine

Fructans are a group of fructose polymers, synthesized by plants and microorganisms. Plant fructans (inulin and flein) have a relatively low degree of polymerization (to 40), and bacterial (levan) — large (up to 1.000.000). Microscopic fungi, yeast and a lot of bacteria, in particular the representatives of the rumen microflora, are capable of producing inulinase, which breaks down a variety of fructane, and levanase, which hydrolyzes the main chain of levan.

We determined the levanase activity of extracellular bacteria extract of rumen in rams which were fed with natural fructan and sorbent of clinoptilolite during twenty one days. Kinetic analysis of the inulinase fructan hydrolysis reaction and levanase was performed in a standard incubation environment modified by the physical-chemical parameters (temperature, pH) and substrates content. We determined the Michaelis constant for the substrate saturation conditions (inulin and levan) and a maximum reaction speed of hydrolysis by the method of Lainuiver-Berk. Temperature (37 °C) and pH optimum (4–6) inulinase and levanase activity was defined.

We have found out that with the increasing concentration of inulin and levan from 0.1 to 0.4–0.5 mM the enzymatic activities of fructanhydrolase monotonously increased to their maximum values and thereafter they were maintained at a constant level. It was found that inulin was metabolized with inulinase at greater speed compared to levan under conditions of saturation with the substrate. Levanase hydrolyzed levan but was inactive concerning inulin. In the presence of clinoptilolite the affinity of both hydrolasesdue to the substrates was increased.


1. Baran M., Kravtsiv R., Kalachnyuk G., Bomba A., Zitnan R. Optimisation of ruminant digestion by influencing the ruminal fermentation. Slov. Vet. J., 2008, no. 2, pp. 117–118. (in Ukrainian)

2. Ettalibi M., Baratti J. C. Molecular and kinetic properties of Aspergillus ficuum inulinases. Agric. Biol. Chem., 1990, vol. 54, pp. 61–66. https://doi.org/10.1271/bbb1961.54.61

3. Dai D., Nanthkumar N. N., Newburg D. S., Walker W. A. Role of oligosaccharides and glycoconjugates in intestinal host defense. Journal of Pediatric Gastroenterology and Nutrition, 2000, vol. 30, no. 2, pp. 23–33. https://doi.org/10.1097/00005176-200003002-00005

4. Safety evaluation of fructan. Tema Nord, 2000, 116 p.

5. Wanker E., Huber A., Schwab H. Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli. Applied and Environmental Microbiology, 1995, vol. 61, no. 5, pp. 1953–1958.

6. Alijev A. A., Kafarov M. S. The method of fractionation of proventriculus contents on components. Bull. farm animals, 1971, vol. 5, pp. 69–72.

7. Vlizlo V. V., Fedoruk R. S., Ratych I. B. Laboratory methods of research in biology, animal husbandry and veterinary medicine. A guide. Lviv, Spolom, 2012, 764 p. (in Ukrainian)

8. Eisenberg V. L., Stojko V. I., Demidenok E. A. Methods of quantitative determination of the activity of the fungal inulinase using Sumner reagent. Biotechnology, 2007, no. 5, pp. 95–96. (in Russian)

9. Avigad G., Bauer S. Fructan hydrolase. Methods Enzymol., 1966, vol. 8, pp. 621–628. https://doi.org/10.1016/0076-6879(66)08112-6

10. Cornish-Bowden A. Fundamentals of Enzyme Kinetics. 4th Edition. 2012, 510 p.

11. Wilkinson G. N. Statistical estimations in enzyme kinetics. Biochem. J., 1961, vol. 80, p. 32. https://doi.org/10.1042/bj0800324

12. Somogyi M. Notes on sugar determination. J. Biol. Chem., 1952, Vol. 195, pp. 19–23.

13. Stryer L. Biochemistry. W. H. Freeman & Co, New York, 1988.

14. Antosova M., Polakovic M Fructosyltransferases: the enzymes catalyzing production of fructooligosaccharides. Chem. Pap. — Chem. Zvesti, 2001, vol. 55, pp. 350–358.

15. Farine S., Versluis C., Bonnici P. J. Application of high performance anion exchange chromatography to study invertase-catalysed hydrolysis of sucrose and formation of intermediate fructan products. Appl. Microbiol. Biotechnol., 2001, vol. 55, pp. 55–60. https://doi.org/10.1007/s002530000493

16. Pudjono G., Barwald G., Amanu S. Activity of inulinase of some strains of Bifidobacter iumand their effects on the consumption of foods containing inulin and other fructans. Inulin and inulin-containing crops. Amsterdam, Elsevier, 1993, pp. 373–379.

17. Muramatsu K., Onodera S., Kikuchi M., Shiomi N. Substrate specificity and subsite affinities offructofuranosidase from Bifidobacterium adolescentis G1. Biosci Biotechnol Biochem., 1994, vol. 58, pp. 1642–1645. https://doi.org/10.1271/bbb.58.1642

Download full text in PDF format

© 2016 Institute of Animal Biology